
BUILDING FAULT
MANAGEMENT INTO
NFV DEPLOYMENTS
Background and Purpose of
OPNFV’s Doctor Project

A Linux Foundation Collaborative Project

Building Fault Management into NFV Deployments

INTRODUCTION

Telecom services have very high requirements
on service performance, often as high as
the famous “five nines” or 99.999%, which
equates to only five and one-half minutes of
downtime per year.

As a consequence, these services must employ very stringent redundancy and high

availability mechanisms. To give an example of the impact of downtime, any service

interruption in (for instance) Evolved Packet Core (EPC) nodes could disconnect

thousands of subscribers from the mobile network.

Carriers are migrating from utilizing specialized equipment to Network Functions

Virtualization (NFV)-based networks where the same rules would apply. As they run

applications in a virtualized environment, with software decoupled from standard

hardware, they need a new fault management and maintenance framework to

achieve these requirements. The Doctor project in OPNFV1 was created to provide

this support.

Doctor creates an open reference platform that features immediate notification of

a wide range of failure events from the NFV Infrastructure (NFVI)2, and supporting

orchestration for virtual network functions (VNFs) to recover. This is provided

through immediate notification to the Virtualized Infrastructure Manager (VIM) when

infrastructure is unavailable.

As with all OPNFV projects (and in the spirit of NFV itself), Doctor is driven

by multiple vendors and service providers. The project is highly active, and

collaborates with widely recognized ETSI NFV ISG3 and upstream open source

projects (e.g., OpenStack4).

2

1 See https://wiki.opnfv.org/display/doctor.
2 NFVI includes the environment (e.g., physical machines, hypervisors, storage and network
 elements) in which VNFs are deployed.
3 The composition and functionality of all components of the ETSI NFV Functional
 Architecture are detailed in the NFV Architectural Framework at http://www.etsi.org/deliver/etsi_gs/
 nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf.
4 See https://www.openstack.org/.

https://wiki.opnfv.org/display/doctor
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.openstack.org/

Building Fault Management into NFV Deployments

3

DOCTOR USE CASES

Carrier-grade high availability support may be
inbuilt or provided by a platform, but the key
requirement is very fast detection and reaction
time to minimize service impact.

The Doctor project focuses on fault management and recovery,

ensuring that applications come back to a fully redundant configuration

faster than before. By focusing on supporting these capabilities in the

infrastructure, Doctor maximizes the chances that NFV infrastructure

will meet the stringent “five nines” requirements expected of

telecommunications equipment.

As an example, Telecom services typically come with an active-standby

(sometimes abbreviated ACT-STBY) configuration which is a 1+1 (one ACT,

one STBY) redundancy scheme. This is also known as a “hot standby”

configuration—if an active node is unable to function properly for any

reason, the standby node is instantly made ACT, and affected services

incur no service interruption.

After recovery, either the previously active node is made standby, or a

new standby node is configured. The actual operations to instantiate/

configure a new standby node are similar to those involved in creating a

new VNF, and would typically be handled by orchestration functions such

as a VNF Manager (VNFM) or an NFV Orchestrator (NFVO).

In the following use cases, these Management and Orchestration (MANO)

functions are referred to as “consumers” of VIM.

Building Fault Management into NFV Deployments

4

FAULT MANAGEMENT

The following figure presents a
system-wide view of Doctor’s fault
management functionality. Consumers
(VNFM or NFVO) manage the respective
virtual resources (VMs in this example)
shown with the same colors.

Figure 1: Doctor’s Fault Management Functionality

Consumer C1

Hypervisor

Hardware
Server S2

VM-7

Hypervisor

Hardware
Server S3

VM-4

Hypervisor

Hardware
Server S1

VM-1 VM-2

Consumer C2 Consumer C3

4. Switch to SBY configuration

5. Instruction (VM ID)

6. Execute
Instruction
-e.g. migrate VM

1. Fault
Monitoring

-Hardware fault

-Hypervisor fault

-Host OS fault

3. Fault Notification
(VM ID, Fault ID)

2. Inform the Consumer?
If YES, find owner of a�ected VMs
from database

Resource Pool

Virtualized Infrastructure Manager
(VIM, e.g. OpenStack)

Resource
Map

Server - VM mapping

Server S1 VM-1, VM-2

Server S2 VM-7

Server S3 VM-4

Ownership Information

VM-1, VM-7 Consumer C1

VM-2 Consumer C2

VM-4 Consumer C3

OpenStack Northbound Interface

Building Fault Management into NFV Deployments

5

The VIM controller detects faults in the NVFI (Step 1) affecting the proper

functioning of the virtual resources (labeled as VM-x). Faults may be

related to (for example) the hardware, hypervisor, or the host operating

system.

At this point, the VIM locates the consumer of the affected virtual

resources (Step 2), and sends a notification (Step 3). The consumer then

switches the standby node to an active state (Step 4). Minimizing the

reaction time to do this is a necessary basic ingredient for fast failover.

Once the consumer has switched to STBY configuration, it notifies (Step 5)

the VIM. The VIM can then take necessary actions to restore the integrity

and functionality of any affected VMs (Step 6).

Prediction: A Related OPNFV Project

The fault management scenario shown here may also be performed based on fault

prediction, wherein a module predicts an imminent fault in the elements of NFVI.

For example, the rising temperature of a physical server might trigger a pre-emptive

recovery action. Requirements for this type of activity are detailed in a related OPNFV

project called Prediction: “Data Collection for Failure Prediction.”

For more information, see the OPNFV Wiki page for Prediction:

https://wiki.opnfv.org/display/prediction.

https://wiki.opnfv.org/display/prediction

Building Fault Management into NFV Deployments

6

NVFI MAINTENANCE

All network operators perform maintenance
of their network infrastructure. One of the
additional Telco requirements presented
by NFV is that virtualization may increase
the number of elements subject to such
maintenance, since NFVI holds new elements
like the hypervisor and host OS.

For maintenance, the VNF running on the target server machines either

needs to be paused or migrated. Pausing or migrating an active VNF will

interrupt the services being provided by the VNF. In order to avoid this

during maintenance, the correspondence consumer (e.g., the VNFM)

needs to be notified so that it can switch to the standby VNF; it may also

need to create a new standby as well to maintain the active-standby

configuration, thus avoiding any service interruption. The VIM can then

“empty” (clear the VNF on) those servers.

Once the target hardware servers are emptied (i.e., no virtual resources

are running on top), the VIM can mark them with an appropriate flag

(e.g., “maintenance” state) so that these servers are not considered for

hosting of virtual machines until the maintenance flag is cleared (i.e.,

nodes are back in “normal” status).

A high-level view of this procedure is presented in Figure 2. The VIM

receives a maintenance notification (Step 1) from a network operator,

including information about which compute resources are subject to

maintenance (i.e., replacement or upgrade of hardware or a hypervisor).

The VIM then determines which virtual machines are affected by this

change (Step 2), and notifies the respective consumer (VNFM or NFVO)

in Step 3. Based on this, the consumer takes necessary actions (Step 4),

switching to STBY or switching VNF forwarding graphs, and notifies the

VIM (Step 5).

Building Fault Management into NFV Deployments

7

Figure 2: Doctor’s Maintenance Functionality

Upon notification, the VIM empties the hardware (Step 6) so that

consequent maintenance operations could be performed.

Consumer C1

Hypervisor

Hardware
Server S2

VM-7

Hypervisor

Hardware
Server S3

VM-4

Hypervisor

Hardware
Server S1

VM-1 VM-2

Consumer C2 Consumer C3 Administrator

4. Switch to SBY configuration

5. Instruction (VM ID)

6. Execute
Instruction
-e.g. migrate VM

1. Maintenance
Request
(Server S3)

3. Fault Notification
(VM ID, Fault ID)

2. Which VMs are a�ected?
Find Consumer owning the VM(s)
from the database.

Resource Pool

Virtualized Infrastructure Manager
(VIM, e.g. OpenStack)

Resource
Map

Server - VM mapping

Server S1 VM-1, VM-2

Server S2 VM-7

Server S3 VM-4

Ownership Information

VM-1, VM-7 Consumer C1

VM-2 Consumer C2

VM-4 Consumer C3

OpenStack Northbound Interface

Building Fault Management into NFV Deployments

8

STANDARDS AND
UPSTREAM PROJECTS

Fault management is not native to
OpenStack, so this support must be built
into the NFVI (for instance) for Evolved
Packet Core (EPC) VNFs such as mobility
management entities (MME) or service/packet
gateways (S/P-GW) to switch from active to
standby mode as soon as relevant failures
are detected.

For this reason, a gap analysis between relevant upstream projects

(e.g., OpenStack) and Doctor’s requirements is continually performed, and

Doctor contributes accordingly to the identified project. Some examples of

this are shown in the Appendix.

On the standardization side, Doctor is having an impact on fault

management topics in ETSI NFV, namely in the areas of synchronization

and alignment with Interfaces and Architecture (IFA) and Reliability (REL)

working groups.

https://www.opnfv.org/opnfvtestgraphs/per-test-projects/vsperf.

Building Fault Management into NFV Deployments

9

CONCLUSION
MILESTONES, UPSTREAM
CONTRIBUTIONS, AND
DEMONSTRATION

The Wiki page for Doctor lists the key
project facts, including a list of the major
contributors.

The Doctor project provides the necessary functionality and gap analysis

for fault management within upstream projects to ensure that this support

is available. Another major use case for this functionality is maintenance of

the NFV infrastructure.

Building Fault Management into NFV Deployments

10

APPENDIX

NFV infrastructure based on virtualized
environments using standard servers cannot
natively meet carrier-grade availability
expectations that were previously handled by
specialized hardware.

The Doctor project provides the necessary functionality and gap analysis

for fault management within upstream projects to ensure that this support

is available. Another major use case for this functionality is maintenance of

the NFV infrastructure.

Building Fault Management into NFV Deployments

11

Milestones and Goals

Since its creation on December 2014, the
project has accomplished some important
milestones:

• Doubled membership to 15 company members (5 Telco operators, 10 vendors and IT)

• Proposed, implemented and had 3 OpenStack blueprints accepted on a total of

13 code contributions in two projects (Aodh, Nova)

Doctor’s goals for 2016 are to continue fostering openness and collaboration

opportunities among all OPNFV projects and members, as well as upstream open

source communities and standardization bodies.

For the upcoming OPNFV Colorado release, users can expect more features in

various OpenStack projects (e.g., Nova, Congress, and Neutron) contributed by

the Doctor project, addressing additional and much-needed fault management

and maintenance requirements. Users can also expect greater functional testing

scenarios coverage, and improved installation support and documentation.

The Doctor team is also involved in collaboration planning with other existing

OPNFV projects (e.g., the Software Fastpath Quality Metrics project - SFQM6)

aiming to build up an integrated platform for NFV. These activities will

demonstrate open collaboration across OPNFV and upstream projects.

6 See https://wiki.opnfv.org/display/fastpath.

https://wiki.opnfv.org/display/fastpath

Building Fault Management into NFV Deployments

12

Upstream Contributions

In the Doctor project, the team has
developed failure event collection and
immediate notification features in OpenStack
Liberty (released in October 2015). Anyone
looking for immediate alarming can now
leverage these contributions submitted and
accepted in OpenStack.

There is an OPNFV-OpenStack Community Page6 on the OPNFV Wiki that is

jointly maintained by OPNFV and OpenStack community members. This page,

which is updated regularly, describes community engagement practices to

manage joint contributions between the two open source communities.

There are many items listed for the Doctor project; the following table contains

the ones that are completed.

Table 1: Examples of Upstream Contributions from the Doctor Project

Project Blueprint Specification Developer

Aodh Event Alarm Evaluator Ryota Mibu (NEC) Ryota Mibu (NEC)

Nova API to mark nova-
compute down

Tomi Juvonen (Nokia) Roman Dobosz (Intel)

Nova Support forcing service
down

Tomi Juvonen (Nokia) Carlos Goncalves (NEC)

Nova Get valid server state Tomi Juvonen (Nokia) Tomi Juvonen (Nokia)

Nova Notification for server
status change

Balazs Gibizer (Ericsson) Balazs Gibizer (Ericsson)

Other OpenStack projects that are under discussion include contributions from

Doctor include Cinder and Neutron.

6 See https://wiki.opnfv.org/display/COM/Openstack.

https://wiki.opnfv.org/display/COM/Openstack

Building Fault Management into NFV Deployments

13

Demonstration

A demonstration of Doctor’s functionality
is available at https://www.youtube.com/
watch?v=4IlW1bkgi4o.

https://www.youtube.com/watch?v=4IlW1bkgi4o
https://www.youtube.com/watch?v=4IlW1bkgi4o

